
NST: A unit testing system for Common Lisp
- or -

Honing the tester’s vocabulary

John Maraist

SIFT, LLC
Minneapolis, Minnesota, USA

International Lisp Conference 2010

1 / 19



What’s in a test system?

At some level, all (Lisp) test systems let you define four
artifacts:

• Fixtures establishing consistent test environments.
• Criteria that describe correct behavior.
• Tests applying a criterion to specific exemplars.
• Groups of related tests.

2 / 19



Fixtures
Faithful context reproduction

• Provide a convenient, consistent environment for test
evaluation.

• Local name bindings.
• Setup- and cleanup routines.

• For example:
• Database or other resource configuration.
• Interchangeable sets of bindings.

3 / 19



Criteria
What is “right”?

• Non-nil vs. nil.
• Normal completion vs. thrown error.

• Easily extended — assert-equal, assert-error, etc.
• Sequence of assertions.

• More detailed properties of evaluation outcomes, result
values.

4 / 19



Tests
What do we check?

• Could be combined with criteria — single form evaluated,
null-tested.

• More generally: association of criterion and form.
• Via assertion/sequence of assertions.
• Comparison to “answer key”.

5 / 19



Groups
A family name

• Convenient reference for a responsibly-large, hopefully
growth-prone, set of tests.

• Invoke tests, request results by single name.
• We’ll always have package...

6 / 19



NST design philosophy

In NST:
• All four testing artifacts

Criteria • Tests • Groups • Fixtures
are separately defined and named.

• Incorporate frequent operations are supported as features
of the test system — not requiring additional programming
of the underlying test framework representation.

• Oriented towards “permanent” test suites — artifacts in
code files:

• Artifacts in files, loaded e.g. as a test system from ASDF.
• Use REPL for digging into results, re-running individual

tests.

7 / 19



What’s different

From a high-level user view, NST is similar to LIFT or FiveAM.
• Different macro names, keywords, etc.
• But simple tests end up looking about the same.

The main difference is in NST’s treatment of criteria. Each NST
criterion:

• Can be abstracted over criterion arguments.
• Can encapsulate several different individual checks.
• Can aggregate multiple reports of failure or error.

8 / 19



Why complex criteria?

The benefit of these complex criteria is to better scale up to
larger, more complicated test objects.

• Arguments allow minor variations of correctness criteria
within a general rubric.

• Reduce verbosity of each test when invoking named
criterion.

• Reduce number of tests since separate checks not
needed. . .

• Without sacrificing level of detail.
• Without one discovered failure hiding other issues.

9 / 19



Examples — basics

Some simple tests:

(def-test-group some-number-tests ()
(def-test it-is-even

(:predicate evenp)
40)

(def-test hey-not-even
(:predicate evenp)

41)
(def-test is-an-integer

(:predicate integerp)
40)

(def-test hey-not-integer
(:predicate integerp)

40.5))

10 / 19



Examples — basics

Results from these tests:

Group some-number-tests: 2 of 4 passed
- Check hey-not-even failed

- Predicate evenp fails for (41)
- Check hey-not-integer failed

- Predicate integerp fails for (40.5)

11 / 19



Examples — combining criteria

Two things to check:

(def-test-group more-number-tests ()
(def-test even-int-40

(:all (:predicate evenp) (:predicate integerp))
40)

(def-test even-int-40half
(:all (:predicate evenp) (:predicate integerp))

40.5)
(def-test even-int-41

(:all (:predicate evenp) (:predicate integerp))
41))

12 / 19



Examples — combining criteria

Results from these tests:

Group more-number-tests: 1 of 3 passed
- Check even-int-41 failed

- Predicate evenp fails for (41)
- Check even-int-40half raised an error:

Errors:
- the value of excl::x is 40.5, which is
not of type integer.

Failures:
- Predicate integerp fails for (40.5)

TOTAL: 1 of 3 passed
(2 failed, 1 error, 0 warnings)

13 / 19



Examples — naming criteria

We can name new criteria:

(def-criterion-alias (:even-int)
‘(:all (:predicate evenp) (:predicate integerp)))

(def-test-group still-more-number-tests ()
(def-test even-int-40

:even-int
40)

(def-test even-int-40half
:even-int

40.5)
(def-test even-int-41

:even-int
41))

14 / 19



Examples — checking list elements

(def-test-group num-list-tests ()
(def-test num-list

(:each :even-int)
’(40 40.5 41)))

15 / 19



Examples — checking list elements

Results from these tests:

Group num-list-tests: 0 of 1 passed
- Check num-list raised an error:

Errors:
- the value of excl::x is 40.5, which is

not of type integer.
Failures:
- Predicate integerp fails for (40.5)

TOTAL: 0 of 1 passed
(1 failed, 1 error, 0 warnings)

16 / 19



A separate language for criteria
Really?

• Not without disadvantages: harder to debug/investigate a
criterion interactively.

• Canard: “just program Lisp.”
• NST’s :all vs. CL’s and.
• NST’s :each vs. CL’s every.
• If we want the expressiveness that arises from easily

detecting multiple issues, the short-circuiting tendencies of
CL’s functions are not what we want.

• Move from dispatch on these symbols to directly callable
functions?

17 / 19



In the paper

• A more complete review of NST’s features and syntax.
• An overview of the implementation.
• Detailed comparison of about a dozen CL test systems.

18 / 19



Conclusion

NST adds a useful new test abstraction to Lisp’s testing toolkit.
• Good experience with larger test suites.
• Integration with ASDF.
• Support for QuickCheck-style sampled invariant testing.
• Some experimental support for:

• More OO-style test methods.
• JUnit XML output.

• Development continuing.
How to get NST:

• ASDF-install.
• CLiki: cliki.net/NST .
• SVN: https://svn.sift.info:3333/svn/nst/trunk .

19 / 19


