Semi-literate programming

John Maraist

SIFT, LLC
Minneapolis, Minnesota, USA

International Lisp Conference 2010
(Lightning talk — revised slides)

SIFT i

1/12

Why literate programming?

On Tuesday we heard from Roy Turner about literate
programming:

Hey, your manual and your code say two different
things!

What | more usually hear

Hey, your manual, your docstrings and your code say
three different things!

3/12

Literate programming aims for comprehensive
explanation

Semi-literate programming has more modest goals.
o Not worried about explaining the algorithm.
e We need to document the API.
e Don’t need to generate a whole, complete document.
e But some snippets to \ input would be great.
e Include docstrings in what we generate.
e Emacs, for example, draws from the docstrings.

SIFT

4/12

Example: NST's def-fixture macro

Note: no docstring.

fixture, Tisp

[defmacro def-fixtures Chame A
(#key (uses nil uses-supp—p)
fassumes nil assumes—supp—pl =i
special outer inner documentation cache
(setup nil setup-supp-pl
(cleanup nil cleanup-supp—pl
(startup nil startup-supp—p
(finish nil finish—supp-p)
exXport-hames
Cexport—bound-names nil export—bound-names—supp-p)
Cexport—fixture—hame nil
export—fixture—hame—supp—p)
ghody bindings)
ideclare Cighorable assumes outer inher])
i3 Some arguments can be either a singleton or a 1ist; correct the
i3 latter into the former so that internally it's all uniform.
(unless (listp uses) (setf uses (1ist usesil) r

e — ACL fixture, lisp (Common Lisp Font; pkg:sift.nst)-—-S%-————————
Wrote Jhome/imALib/Lisp/nst/carefixture, Tisp

Example: NST's def-fixture macro

Below the defmacro, we declare its documentation.

e compiler-macro, as opposed to function, variable,
etc.

e Different forms of documentation: :latex, :plain

fixture.1isp|

[(def-documentation (compiler-macro def-fixtures) A
(itags primaryd
(iintro (ilatex "Fixtureshhindex{fixturesy are data structures and values whicd)

h may be

referred to by name during testing., HST provides the ability to use

fixtures across multiple tests and test groups, and to inject fixztures

into the runtime namespace for debugging.

B oset of fixtures s defined using the ‘Mtexttt{def-fixtures)

macro: yhindexddef-fixturesgis\texttt{def-fixtures:>")

I
(icallspec (Fixture-name C(Ekey (special (Ci5eq NAME)
(ikey-head fixture (:s5eq MAMED]))
(outer FORM)
(inner FORM)
(setup FORM) F
1508—————1 AL fixture. lisp tCommon Lisp Font; pkg:sift.nst)-————62%——————

6/12

Example: NST's def-fixture macro

:callspec gives a user’s view of the lambda list.
¢ (Can be) more instructive that the verbatim lambda list.

e To do: check against lambda list for compatibility.

fixture. 1isp

B Ccallspec (fixture-name (&key (special ((iseq NAME) g
[key-head fixture (:s5eq NAME])DD)

(outer FORM)
(inner FORM)
(setup FORM)
(cleanup FORM)
(startup FORM)
(finish FORM)
(documentation STRING)
(cache FLAG) _J
(export—names FLAG)
(export—fixture—name FLAG)
(export-bound-names FLAG))

zhody

(Ciseq (Clopt C&key (cache FLAG)ID) MAME FORMIIDD é

ACL

fixture, 1isp

(Common Lisp Font; pka:sift, nst)-———e4%-———————

Example: NST's def-fixture macro

:params gives documentation of each parameter
e Alajavadoc comments.
e Also useful for slots.
» Note mixture of IATEX and plain text.

fixture.1isp|

B Cparams (Fixture-name "The name to be associated with this set of fixtures, ™ Al

Cinner Cplain "List of declarations to be made inside the let-binding
q of names of any use of this fixture. Do not dnclude the Y'"declare™" keyword ha
ere; NST adds these declarations to others, including a special declaration of ag@
17 bound names, "1

touter (:plain "List of declarations to be made outside the let-bindig
ng of names of any use of this fixture. "))

(documentation Ciplain "A documentation string for the fixture set, ")@
3

(special (:latex "Specifies a 1ist of names which should be declared @
shtexttt{speciall din the scope within which this set's fixtures are evaluated, @
The individual names are taken to be single variable names, Each “stextttd (fiz@fg

I508-———— ACL fizture, 1isp (Common Lisp Font; pkg:sift, hst)———G8¥——————— |

8/12

Example: Generated for the manual
1 Fixtures

Flctures are data stroctures and values which may be referved to by name during
testing. NAT provides the ability to wse fist ltiple tests and test
gronps, and to inject fxtures nto the runtime pamespace for debugging, A set
of fixtures B defined using the def-fixtures macro:

= ACFOSS K

(def-figtures fixture-name ([:special (MAME ... NAME
(:fixture HAME ...
HAME})]

[:outer FORM 1 [:ioner FORM]

[:setup FORM] [:cleanup FORM]
[:startup FOAM 1 [:finish FORM]
[:documentation STRING]

[:cache FLAG]

[:export-names FLAG]

[:export-fixture-name FLAG]

[:export-bound-names FLAG 1)

([([:cache FLAG]}] NAME FORM)
([([:cache FLAG]}] NAME FORM})

fixture-name The wame to be associated with this set of fixtures.

Inner List of declarations to be made insbde the let-binding of names of any
use of this fixture, Do not include the “declare” kevword heee: NST adds

9/12

Example: The generated docstring

srommon=11sp* | fixture, Tisp

nst(s): (documentation 'def-fixtures 'compiler-macrolf]

"Fixtures are data structures and values which may be referred to by name during
testing. NMST provides the ability to use fixtures across multiple tests and
test groups, and to dinject fixtures dinto the runtime namespace for debugging. @&

set of fixtures is defined using the def-fixtures macro

(def-fixtures fixture-name ([:

T e e e e T

([([:cache FLAC 1) 1 HAM
ttl([icache FLAS 1) 1 HAME

fixture-name

special (NAME ... NAME

Cifixture MAME ...
router FORM] [idnner FORM]
isetup FORM 1 [:icleanup FORM]
rstartup FORM 1 [i finish FORM]
tdocumentation STRING 1 [
rexport-names FLAS]
rexport=fixture—name FLAS]
rexport-bound-names FLAC 1)
FORM)

FoRMI D

The name to be associated with this set of fixtures

inner

HAMEDD 1

tcache FLAG]

List of declarations to be made inside the Tet-hinding of names of any use F

I1503—**—ACL Idle *common-11sp*

(Inferior Common Lisp)-——--52%

10/12

Facts, benefits, problems

e There’s an extensible model behind it
¢ Dispatch on package or target type to define
system-specific documentation models.
o Extend the standard documentation models for richer/finer
information.
e Similarly for output models.
o Early days — especially the API for customization is likely
to change.
e Is it the right document model?
e Wordiness in the code.
e Quoting all of the backslashes is tedious.
e |t's not where the docstrings are.
e Shadowing c1:function et al.

SIFT

11/12

The defdoc library

Problems notwithstanding, it does now work.
e Developed to coordinate documentation for NST.
e Generates docstrings, manual, quick-reference sheet.
e Used via ASDF.

Currently part of NST

e Use the svn HEAD:
https.//svn.sift.info:3333/svn/nst/trunk/ext/defdoc.

e Ironically, very little documentation right now!
o Will separate from NST at some point.

SIFT

12/12

